Constructive Proofs of Concentration Bounds

نویسندگان

  • Russell Impagliazzo
  • Valentine Kabanets
چکیده

We give a simple combinatorial proof of the Chernoff-Hoeffding concentration bound [Che52, Hoe63], which says that the sum of independent {0, 1}-valued random variables is highly concentrated around the expected value. Unlike the standard proofs, our proof does not use the method of higher moments, but rather uses a simple and intuitive counting argument. In addition, our proof is constructive in the following sense: if the sum of the given random variables is not concentrated around the expectation, then we can efficiently find (with high probability) a subset of the random variables that are statistically dependent. As simple corollaries, we also get the concentration bounds for [0, 1]-valued random variables and Azuma’s inequality for martingales [Azu67]. We interpret the Chernoff-Hoeffding bound as a statement about Direct Product Theorems. Informally, a Direct Product Theorem says that the complexity of solving all k instances of a hard problem increases exponentially with k; a Threshold Direct Product Theorem says that it is exponentially hard in k to solve even a significant fraction of the given k instances of a hard problem. We show the equivalence between optimal Direct Product Theorems and optimal Threshold Direct Product Theorems. As an application of this connection, we get the Chernoff bound for expander walks [Gil98] from the (simpler to prove) hitting property [AKS87], as well as an optimal (in a certain range of parameters) Threshold Direct Product Theorem for weakly verifiable puzzles from the optimal Direct Product Theorem [CHS05]. We also get a simple constructive proof of Unger’s result [Ung09] saying that XOR Lemmas imply Threshold Direct Product Theorems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds on van der Waerden Numbers: Randomized- and Deterministic-Constructive

The van der Waerden number W (k, 2) is the smallest integer n such that every 2-coloring of 1 to n has a monochromatic arithmetic progression of length k. The existence of such an n for any k is due to van der Waerden but known upper bounds on W (k, 2) are enormous. Much effort was put into developing lower bounds on W (k, 2). Most of these lower bound proofs employ the probabilistic method oft...

متن کامل

Strongly uniform bounds from semi-constructive proofs

In [12], the second author obtained metatheorems for the extraction of effective (uniform) bounds from classical, prima facie nonconstructive proofs in functional analysis. These metatheorems for the first time cover general classes of structures like arbitrary metric, hyperbolic, CAT(0) and normed linear spaces and guarantee the independence of the bounds from parameters raging over metrically...

متن کامل

Proof-theoretic aspects of obtaining a constructive version of the mean ergodic theorem

Proof-theoretic aspects of obtaining a constructive version of the mean ergodic theorem – p. 1/27 Introduction 'Proof mining' is the subfield of mathematical logic that is concerned with the extraction of additional information from proofs in mathematics and computer science. G. Kreisel: What more do we know if we have proved a theorem by restricted means other than if we merely know the theore...

متن کامل

Error Bounds for Some Semidefinite Programming Approaches to Polynomial Minimization on the Hypercube

We consider the problem of minimizing a polynomial on the hypercube [0, 1] and derive new error bounds for the hierarchy of semidefinite programming approximations to this problem corresponding to the Positivstellensatz of Schmüdgen [26]. The main tool we employ is Bernstein approximations of polynomials, which also gives constructive proofs and degree bounds for positivity certificates on the ...

متن کامل

A Feasibly Constructive Lower Bound for Resolution Proofs

Haken [4] first proved the intractability of resolution by showing that a family of propositional formulas encoding the pigeon-hole principle require superpolynomial-sized resolution proofs. Later, several authors [6,1,2] extended Haken’s techniques to obtain exponential lower bounds on the size of resolution proofs. All of these results are based on the counting method used by Haken and later ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010